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An exact derivation is given of the dynamo equation in the presence of an arbitrary 
incompressible mean flow u,. A mixed representation is used specifying u, in terms 
of a Lagrangian displacement, while Eulerian coordinates are employed for the 
turbulent velocity u superimposed on u,. 

When the first-order-smoothing approximation is made ‘(FOSA ; valid when the 
turbulent velocity u has a short correlation time T,,) the usual dynamo equation is 
recovered, except that the turbulent velocity u in the tensors a$, and Bgsk is replaced 
by 6. The bar represents the effect of advection and is expressed solely in terms of 
the Lagrangian coordinate specifying the mean flow u,. Thus the intuitive idea is 
confirmed that dynamo action depends only on velocity correlation functions 
measured at a point comoving with the mean flow. The result admits easy evaluation 
in actual model situations. This is illustrated with an example tailored to the solar 
dynamo. A shear in u, causes a (kinematic) anisotropy in the tensors at, and Bgsk. This 
can be a large effect, which comes on top of the intrinsic (dynamical) anisotropy in 
the velocity correlation functions. Subsequently, the analysis is extended beyond 
FOSA up to arbitrary order, relevant for long correlation times 7, on the basis of the 
work of Van Kampen (1974). It is shown that the same formalism is also applicable 
to the problem of turbulent transport of a scalar. 

Conditions for applicability of the work are (1) very large magnetic Reynolds 
number, (2) incompressible flows u and u,, (3) stationary mean flow u,, and (4) 
correlation time 7, Q period of the dynamo. 

1. Introduction 
The starting point of kinematic dynamo theory is the induction equation 

(1) 
a 
at 
- B = V x ( V X  B). 

The resistive term is omitted because attention is focused on the case of very high 
magnetic Reynolds number. The fluid motion V is regarded as incompressible 
( V .  V = 0 )  and is split into two parts: the (non-uniform) mean flow u,, constant in 
time, and the (stochastic) turbulent convection u. Likewise, B is split into an average 
field B, (the ‘dynamo field’) and a stochastic component b. As usual, ( ) represents 
the ensemble average over all realizations of u : 

V =  uo+u, (v) = u,, ( u )  = 0,  P a )  

B = B,+b, ( B )  = B,, ( b )  = 0 ,  

V . U ,  = V * U  = 0 ,  V*B, = V * b  = 0.  
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By taking the ensemble average of (l) ,  one obtains the following well-known 
equations for Bo and b : 

a 
-B, = v x (u,  x B,+ ( u  x b ) ) ,  
at 

a 
-b  = v x (v,  xb+oxB,+v  x b - ( u x b ) ) .  
at 

( 3 4  

(3b) 

At present, these equations can only be solved approximately. The usual approach 
is to ignore in (3b) the term u x b- ( u  x 6 ) .  This is called the first-order-smoothing 
approximation (FOSA), which is justified when 

T C V / l  -4 1 .  (4) 

T,, v and 2 are the correlation time, the typical velocity and typical lengthscale 
associated with the turbulent velocity field u. For physically interesting cases, (4) is 
likely to be violated. In the solar dynamo, ~ , v / l -  1,  so that FOSA is a bad 
approximation, but it is done nevertheless to keep the problem tractable. Sub- 
sequently, one also ignores the mean-flow term uo x b in (3b), which is regarded as 
‘reasonable’ (Cowling 1981). Then (3b) reduces to 

a 
- b = V x ( ~ x B , ) ,  at (5)  

which can be solved easily. Hence ( v  x b) can be expressed in terms of B,, which is 
needed in (3a)  to obtain a closed equation for B,, the dynamo equation. 

The FOSA approach can be avoided, and an exact equation for Bo can be found 
from (3a, b) by applying the theory of stochastic differential equations (Van Kampen 
1974). The result involves an infinite series containing progressively higher-order 
velocity correlations, which for 7, v/ l  - 1 converges slowly, if at all. Knobloch (1977, 
1978) has evaluated the first few terms, but only for v, = 0. 

The case of a non-vanishing mean flow has been studied by Krause & Rlidler (1971, 
1980, chap. 8) and by Krause (1973, 1976). These authors considered a mean flow 
with constant shear and a non-zero molecular resistivity. Radler (1980) discusses the 
more general case of a non-uniform rotation, in combination with a compressible 
turbulent velocity u. 

The drawback of these existing treatments is that their results are usually rather 
complicated and not easy to interpret physically. My object is to show that the 
problem of turbulent transport of a vector B at arbitrary mean flow and zero 
resistivity is amenable to a general and systematic treatment, leading to an 
intuitively simple result, which can be extended beyond FOSA to arbitrary order, 
and to turbulent transport of a scalar. 

This article evaluates the kinematic effects of the u, x b term in (3b) in terms of 
velocity correlation functions. Specific tensorial properties of the latter are not 
considered here, but these have investigated extensively (see e.g. Moffatt 1978 ; 
Krause t Radler 1980). 

2. Operator notation 
It is profitable to employ a formal notation in terms of two operators R and C : 

R = V x ( u , x  ), C = V x ( u x  ). (6) 

V, contains all systematic, non-stochastic fluid motion. There are no restrictions on 
the nature of uo other than that v, should be time-independent and V*o, = 0. 
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With these definitions 
a 
at 

(l)+-B= ( R + C ) B ,  

and, using (R) = R and ( C )  = 0, 

a 
(3a)  + z B o  = RB,+<Cb) 

a 
( 3 b )  + t b  = Rb+CB,+Cb-(Cb).  

297 

(7) 

Now, we ignore the last two terms in (8b) ,  i.e. FOSA, and substitute 

b = etR/? (9) 

in the remainder. Transformation (9) is applied frequently here, and exclusively . .  to 
vector fields having zero divergence. Here we merely note that exp(-tR) is the 
inverse of exp ( t R )  and that exp ( t R )  conserves the value of the divergence. Both 
assertions follow directly from the exponential series expansion. For example, for any 
vector a, 

(10) 
1 

n .  
V*{etR a} = V*X I ( t R ) n  a = V*a,  

because V* R = 0. Since V - b  = 0, it follows that V*/? = 0. 
For /? one obtains the equation 

a 
at 
-/? = e-tR CB,, 

which can be solved immediately : 
t 

/?(t) = [ ds e-sR C(8) Bo(8) + /?( - 0). (12) 
J-a, 

At this point, the convention is adopted that the explicit position and time argument are 
always r and t ,  reepectively, unless otherwise indicated. For example 

Bo = B,(t) = Bo(r, t ) ,  C(s)  = V x ( ~ ( r ,  8) x ), C = V x (u(r, t )  x ), etc. 

Putting 8 = t -7 ,  it follows from (12) that 

( C b )  = ( C  etR/?) = dT(C(t) eTRC(t--7))BO(t-7). 5,” (13) 

The contribution of /( - 00) vanishes since there is no correlation between u( t )  and 
b(t,) as soon as It - to  I % 7,. One may now substitute (13) in (8a) .  To obtain a closed 
equation for B,, one must express B,(t - 7 )  in (13) in terms of B, = Bo(r, t ) .  The theory 
of stochastic differential equations (Van Kampen 1976, f 12, 1981, chap. 14) shows 
that for a short correlation time (i.e. when (4) holds) the result is 

%Bo= {R+~oa,d+(C(t)eTRC(t-r)e-TR) I B,. 

This is the dynamo equation in disguise. In retrospect, i t  is seen that (14) implies 
the substitution BJt-7) = exp (-7R)B, in (13), or, explicitly, 

Bo(r, t )  = eTR Bo(r, t--7) for 75 7,. (15) 
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Relation (15) need only hold for 7 ;5 7,, as the correlation function ( ) in (13) 
vanishes for 7 9 7c anyway. Note that (14), and therefore also (15), emerges from the 
theory, where no other assumption than (4) is made : relation (14), and therefore (15), 
guarantees that all terms up to order ( t ~ , / l ) ~  are accounted for. Apparently, one may 
ignore the stochastic term (Cb)  in (8a )  for short times (7 < 7,). Integration then leads 
to (15). Relation (15) is also the proper formulation of the usual statement that ‘the 
dynamo field changes only slowly in time ’. This matter is discussed further in $4. 

3. The case of zero mean flow 
To make contact with known results, suppose one replaces in (14) exp ( & t R )  + 1, 

thus ignoring all effects of rotation and shear induced by a non-zero mean flow. Then 
(14) reads a 

-B, at = { R + j o m d ~ ( C ( t ) C ( t - ~ ) ) } B o .  

Writing out R and C explicitly, this is seen to be equivalent to 

a 
-B, = v x (v ,  x B,+8) ,  
at 

8 = ~ 0 m d 7 ( u ( t ) ~ V ~ { v ( t - ~ ) ~ B 0 } ) .  (W 

Exactly the same is found by solving b from ( 5 )  and then computing ( u  x b ) .  Working 
out the vector products with V . U  = V - B ,  = 0 gives 

with 

Substitution of (17) in (16a) yields the dynamo equation in its usual form. Further 
simplification is frequently sought by supposing that the turbulent velocity u in 
(18a, b) is isotropic. 

The following conceptual difficulty arises of one applies (18) to compute a&, t )  and 
/$sk(r, t )  when 0, + 0, as is commonly done. The correlation functions in (18) contain 
u(r, t )  and u(r, t -7 ) .  These velocities are measured at the same fixed position r,  but 
at quite different material points in the dynamo (see figure 1). Consider a fluid 
element that is at r a t  time t -7 ,  when its velocity is measured to find u(r,t-7).  
After 7 seconds this experiment is repeated to obtain u(r , t ) ,  but the original fluid 
element has moved to B. From a statistical point of view, position B is uncertain 
to within a sphere (say) with centre at A’ found by following the mean flow for 7 

seconds. The linear distance AB can be estimated by AA’, and this can be much larger 
than a correlation length 1, even if 7 ;5 7,. For 7 - 7, one finds AA’I1 - 5 for the 
upper convection zone of the Sun, and much for rapidly rotating stars. 

One could argue that there will be no velocity correlation between the material 
positions A and B since AB & 1, so that the contribution to the integrals in (18) is 
simply zero. The implication is that ats and Ptsk defined by (18) become small and 
eventually approach zero for rapid rotators. However, it  seems intuitively obvious 
that dynamo action at a given point (and therefore the tensors at, and P#&) may only 
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/ 
Observer 
FIGURE 1.  A material point that is at A at time t--7 will 

have moved to B after a time interval T .  

depend on velocity correlations measured at  this point as one moves along with it at 
the meunfluid speed 0,. This is just a matter of reference frames: if one observes from 
a moving frame that such 0, vanishes locally, say at  point A, then one naturally 
expects dynamo action a t  A to depend only on what happens in the (stationary) point 
A. We.shal1 prove that this is actually the case. In doing so, not only this effect of 
u0 itself is recovered; the derivatives of o0 (the shear) turn out to have a large influence 
on a(, and Brsk as well. 

4. Analysis of the mean flow-operator exp (7R) 
In order to proceed with (14), the meaning of exp (7R) must be established. This 

is straightforward on the basis of techniques available in the literature. The 
developments below up to relation (27) are to be regarded as a definition of notation. 
Use will be made of a mixed Eulerian-Lagrangian representation. This technique 
was introduced by Soward (1972), and generalized by Andrews t McIntyre (1978). 
These authors envisage a mean flow on which the fluctuations are represented by 
Lagrangian displacements (see in particular Moffat 1978, $$8.2-8.5). We shall take 
the opposite approach: the mean flow U, is treated in terms of a Lagrangian 
coordinate, whereas the Eulerian representation is used for the turbulent velocity u 
superimposed on uo. 

Let u be a divergence-free vector field, and define 

u(r, t )  = etR u(r, to) .  (19) 
The vector u satisfies the equation 

a 
-U = RU = V x ( 0 0  x u),  
at 

which means that u is advected by the mean flow uo. For incompressible oo, (20) has 
the following Lagrangian solution (Roberts 1967, $2.3) : 

u(r, t )  = D-t U ( r - t ,  O ) ,  (21) 

with 

(Roberts 1967, $1.7). The vector r is a fixed (Eulerian) position, and t is the 
(Lagrangian) position of an imaginary material point moving with the mean flow oo 
t seconds after its position was r .  The following relation is an elementary consequence - - 

at 
(D)-'t, = ar ' 

or (Dt)-' =- 3x5 
of the chain rule: 
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If we allow first a time p to elapse and then another q, we obtain the identity 
( r P ) Q  = P + q .  In particular, (r-t)t = rO = r. The upper index to r indicates the elapsed 
time. Such a construction is possible since U, is stationary. The substitution r-+r-t 
changes Dt into ar-t/a(r-t)t = = ( P ) - l :  

Dt and their inverses equal the unit matrix 1 at t = 0. From VU, = 0 it follows that 
(Roberts 1967, $1.7) 

detDt = 1. (25) 

Relation (21) may be written in terms of the vector field a :  

etR a(r, t o )  = D-t a(rpt, to) .  (26) 

Pictorially, exp (tR) a(r, to)  is generated by letting passive advection by the mean flow 
operate during a time interval t on a snapshot of the vector field a(r,t)  taken at 
t = to. The result is not equal to a(r, t o + t ) ,  since a is supposed to evolve in time 
independently. Only if a itself is advected by the mean flow, i.e. if a also satisfies (20), 
may we conclude that 

a(r,t ,+t)  = etRa(r,t,) = D-ta(r-t,t,). (27) 

Before turning to the analysis of (la), the meaning of (15) is discussed. One might 
think that the usual statement that 'the dynamo field B, varies only slowly in time ' 
justifies the approximation B0(t-7) x B,(t) = B, in (13). This would be correct 
in the case of an axisymmetric dynamo, but in general it  is not. For instance, if 
one visualizes a non-axisymmetric dynamo in a rapidly rotating star, B,(r,t) may 
be quite different from B0(r, t -7 ) ,  as the mean flow, in this case a rotation, may move 
a completely different value of B, to the $xed position r .  A more proper statement 
would therefore be that, for timescales 7 of the order of 7,, the dynamo field B,, 
experiences negligible intrinsic time evolution other than passive advection by 0,. 

This is certainly reasonable if 7, is much smaller than the period of the dynamo. The 
implication is that, for 7 5 7,, B, is advected so that (27) applies. Taking t = 7 and 
to = t -7  there, one recovers (15). One thing must be emphasized now: (15) is not an 
assumption, but a consequence of the theory of stochastic differential equations, which 
in retrospect may be interpreted by saying that B, is passively advected by the mean 
flow for 7 5 7c. 

It remains to evaluate the transformation exp (7R) C(t-7) exp (-7R) in (14). 
Consider a divergence-free vector field a (not advected). Then 

Oa = eTR C(t -7) e-TR a 

= eTR v x [u(r, t - 7 )  x e l R  a(r, t ) ]  

= eTR V x [u(r, t--7) x {DTa(rT, t ) } ] .  (28) 

The second line just writes C(t-7) explicitly and the third is an application of (26). 
According to (26), exp (7R) in (28) is equivalent to a D-' in front and substitution 

of r --f r-T everywhere else. In particular, 0' changes into (DwT)-l, see (24) : 

Oa = D-'[V-'x (v(r-T, t - 7 )  x (D-T)-lu(r, t)}] ,  (29) 

where V-., = a/ax-Tt .  To establish how 0-' acts on the double outer product in (29) 
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FIQIJRE 2. The vectors ii(0) and ii(7) occurring in (37a, b). The trajectory is shown of an (imaginary) 
material point moving with the mean flow, whose position is r at time t .  The turbulent velocity v 
is meaaured (in a frame ,moving with the mean flow, so that ( 0 )  = 0 )  at the position r-' of that 
point at time t - 7. The resulting vector is  then allowed to be paaaively advected by the mean flow 
for a time interval 7 to position r and time t ;  this is done by applying the matrix Pr. In this way 
an intrinsic (kinematic) anisotropy is generated. 

is somewhat technical and therefore deferred to Appendix A. The result is simple: 

Oa = v x [{D-7 u(r-7, t -7)  x a(r, t ) ]  

= v x [{eTR u(r, t - -7))  x a(r, t ) ] .  (30) 

In the last line, we have again used (26). We now define the 'velocity' 8 in 
progressive shorthand notation 

(31) 6(~) = D - 7 ~ ( r - 7 ,  t - 7 )  = eTR o(r, t -7 )  = erR U ( t - - 7 ) .  

B has really three arguments, f j  = e(r, t ,  7 ) ,  but, to keep the notation flexible and 
conform to the shorthand convention adopted in $2, we shall take the first two for 
granted, see also figure 2. Then (28), (30) and (31) imply 

e7R v x [u(r, t--7) x e-7R 3 = v x [{eTR u(r, t--7)) x ] 

= v x [@(7) x 1. (32) 

Equation (32) provides the basis for the results derived in this paper. More succinctly, 
for application to divergence-free vector fields, 

eTR C ( t - 7 ) e l R  = QT), C(7) = v x x 1. (33) 

Z: is defined as in (6), but now with tj instead of u. Note, finally, the relation 

C(0) = v x [u(r,t) x 3 = C( t )  = c, 
since tj(0) = u(r, t )  = o(t) = u, in shorthand notation. 

5. Exact results within the first-order-smoothing approximation 
With the last two relations (33) and (34), one may write (14) as 

or, writing R and explicitly, 

(34) 
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with 

These exact results look very similar to the usual approximate relations (16)-(18). 
The only difference brought about by incorporation of the U, x b term from (3b)  in the 
theory is that ij appears in (37)  instead of u. In $7 this is proved to hold not only 
within FOSA, but in all higher-order approximations as well. 

The meaning of (37a, b) is explained in figure 2, and it is clear that the tensors af8(r, t )  
and pt8,(r, t )  defined by (37a, b) depend only on the turbulent velocity u measured 
at the position of m e  material point moving with the mean flow such that its position 
is r at time t .  This confirms the point made at the end of $3.  The passive advection 
applied to ~ ( r - ~ ,  t--7) to generate the vector U(T)  is the origin of an additional aniso- 
tropy in the tensors at, and pis,. Relation (37a,b)  is not only very simple, but also 
straightforward to evaluate, as the example of $6 shows. The interested reader is 
referred to Appendix B, where it is shown that the problem of turbulent transport 
of a scalar (instead of a vector as above) at non-zero mean flow can be dealt with 
in the same way. 

6. Example 
The advantage of the formal expressions (37a, b) is that they can be evaluated once 

the Lagrangian coordinate f for the mean flow is specified. In this section we shall 
follow the simplified notation defined in figure 3,  taking t = -7 there. We choose for 
u, a rotation, tc, = P x r,  with non-uniform dd to be specified later. In this case it is 
useful to transform to a frame that is locally rigidly corotating: let 9 be the rigid 
rotation part of D, i.e. what remains of D if VSZ is put equal to zero. 9 being 
orthogonal, we write (31) as 

@(T) = Dg*gu(r-', t -7 )  E M(T), (38) 

A = Dg*, (39) 

I(7) = 9u(r-' ,  t - -7).  (40) 

Note the difference between ij and I. Radler (1980) uses transformation (40) - a 
quasi-rigid rotation at the local value of dd - in his analysis. Note also that V* E ( T )  9 0, 
whereas V.U(T) = 0. 

where * indicates the transposed matrix, and 

With these definitions, (37a, b) become 

= JoCQ d7A81(',(0) 'z(-7))e (41 b)  

In (41) the (kinematic) distorting effects of the mean flow have been removed from 
the velocity correlation functions and put together in the coefficients A,.  The 
velocities I may be thought of as turbulent velocities corrected for rigid rotation 
without shear. Note that aa, contains an extra contribution if there is shear 
(V, A,, =/= 0). This term appears to be diffusive in nature, as the velocity correlation 
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P r 

FIQURE 3. (a) Notation employed in $4. (b )  Corresponding 
simplified notation used in $6 and Appendix A. 

function contains no derivative. One might object that the effect appears solely as 
a result of transformation (39), but I shall refrain from a full discussion. Diffusive 
or not, this extra contribution to a,, is related to turbulent diffusion and therefore 
different from the diffusive a-effect in the work of Braginskii (1965a, b), which is 
proportional to the molecular resistivity. 

To proceed with the evaluation of (41), we take the z-axis parallel to n, with 52 
depending only on z, as a rough model of solar differential rotation (Stix 1981). The 
Lagrangian coordinate r(rO, 7 )  of a material point carried by the mean flow uo is then 
given by 

with r2 = ( X O ) ~ + ( ~ O ) ~  = x 2 + y 2 ,  sh = Q(z) ,  #O = arctan(yo/xo), so that r = rO for 
7 = 0. From (22) and figure 3 one obtains Dl, = ax,/axo,, or with (42), 

x = r cos ( 5 2 ~ + # O ) ,  y = r sin ( 5 2 7 + # O ) ,  z = zo, (42) 

xxo+yyo xyO-y# 0 

xxo+yyo 0 +7-  

0 r2 ) (: 0 0  : -;). (43) 
The first matrix in (43) is 9, so that A becomes 

0 0 - y  

A = D B * = / + T % ( :  aZ : i). (44) 

Further simplification is gained by transforming to cylindrical coordinates. For A this 
is trivially achieved by taking x = rand y = 0 in (44), since then the frames (ez, ey, e,) 
and (er, e$, e,) coincide : 

Owing to symmetry, (45) is generally valid. Hence 

A ,  = 4, + 752' 46, 

(45) 

(46) 
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with the convention 1 = r ,  2 = +, 3 = z. e, and e# corotate rigidly, but e, is tilted 
when a' + 0, as is confirmed by the following relations: 

be, = e,, Ae# = e4, be, = ez+762'e4. 

( q o )  W)) = LC.1 &,l, (474  

with f(7) (g(o).v X 8(7)>, g(7)  ( C ( O ) * 8 ( 7 ) )  (48) 

(f and g may also depend on r ) .  This is the usual assumption of statistically isotropic 
turbulence. More precisely, it means that o after correction for locally rigid rotation, 
in other words if, is statistically isotropic. This assumption is made here for simplicity 
and to single out the kinematic distorting effects. Of course, it  is not realistic to ignore 
at the same time the anisotropy in the velocity correlations caused by dynamical 
effects (such as Coriolis forces; see further Moffatt 1978; Krause & Riidler 1980), but 
again this is done merely for the sake of a simple example. 

The remaining calculation is standard. Defining the moments 

90 = 

we obtain, after inserting (46) and (47) in (41), 

with 

(49) 

The last two terms in (50) originate from (41 b). For axisymmetric dynamo fields, the 
last term in (50) vanishes, leaving just the ordinary scalar /3-term - b o V  x B,. But 
the tensor a remains anisotropic, and this is due to the shear. For zero shear 
(aQ/az = 0 in (51))) a becomes - i f o  I, hence the ordinary scalar a-term survives. The 
terms ( :) g1 in a stem from the second term in (41 a). 

The extra contribution to a can be estimated by taking aQ/az - Q/R, g1 N 7c90, 
fl - 7c f,. For instance, for a,,, 

1 aa 

Here we have written $ fo = a and Lo = p, the usual scalar a- and /3-coeficients. For 
the solar case (52) is of order unity (a - 2.5 x lod6 s-l; 7, - lo6 s; R = 7 x 1 O ' O  cm; 
a - 5 cm 0; /3 - lo1* cmz s-l). Likewise, az4 - a,, - ifo. Hence a large effect is 
indicated, especially in strongly differentially rotating systems. However, it would 
be unreasonable to emphasize this point further without allowing the tensors (47 a, b) 
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to be anisotropic. The main purpose of this example is to illustrate the relative 
mathematical simplicity ensuing from the use of the displacement-gradient matrix 
D. It is straightforward to replace (42) by the Lagrangian coordinate for a more 
complicated mean flow, in particular since it need only be defined over a time interval 
of the order of 7,, since the correlation functions in (41 a, b )  vanish anyway as soon 
as 7 % 7,. 

The example given in this section can also be evaluated on the basis of the work 
of Radler (1980, his relation (3.30)), and the result is different. The origin of the 
difference is that RLdler uses a relation different from (15) to describe the behaviour 
of B, during the previous correlation time. This matter is still being investigated. 

7. Formal generalization to all orders 
This is relevant when the correlation time 7, is long, i.e. when 7, v/Z - 1 rather than 
4 1, as is expected to be actually the case. Generalization is straightforward on the 
basis of the work of Van Kampen (1974). In the basic equation (7) the substitution 

B = etR/?, (53) 

is made (note the difference with (9)), so that (7) becomes 

Van Kampen shows that (54) implies the following equation for (/?) : 

with 
m r m  r m  

K = J, ~ d~ l... J ~ dTn-l <(VOWl ... Wn-l)>>. 
n-a 0 

%'* is shorthand for 
wt = w(t-71-...-7t), w, = W(t ) .  (57) 

The triple bracket in (56) denotes the so-called ordered cumulant, the precise 
definition of which (Van Kampen 1974) is immaterial here, except that it consists 
of a sum of products of ordinary averages: 

Apart from the averaging brackets, each summand in (58) contains a permutation 
of the operators U, .. . Vn--l, with W, appearing always to the very left. 

The dynamo equation follows from (53) and (55) : 

a a a 
-Bo at = -(B> at = -etR(/?) at 

a 
= R etR (@) + etR at (/?) 

= RB,+etR KU), 

or 
a 
-B,= (R+etRKe-tR)B,, 
at (59) 

and i t  remains to work out the second operator in (59). 
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Combining (33) and (54), one may relate V to (5: 

~ ( t - 7 )  = e-(t-T)R C(t-7) e(t-7)R = e-tR ( 5 ( ~ )  etR. 

Since T in (60) is arbitrary, i t  follows from (57) that 

V, = e-tR (5(71+ ... + T J  etR. 

Consider now the product of n permuted operators W, : 

0 = WOW,, ... W,w-l. 

Substitution of (61) in (62) gives 

0 = eptRE(O)C(T1+ ...+7,1) . . .E(71+ ...+ 7,,-,) etR. 

The presence of internal averaging brackets in 0 as in (58) would not interfere with 
the above reasoning, whence it follows that 

(((W, ... qnPl>>> = e-tR(((E(0)(5(~1) ... C ( T ~ +  ... +7n-1))))etR, 

and, finally, with (56), 

The order of magnitude of the nth summand in (63) is (7, v/Z)". For a short correlation 
time, only the term n = 2 contributes: 

etR K e-tR x low dT1 ((((5(0) (5(~,)))) = S O 3  d7 ((5(0) (5(7)) ,  
0 

and substitution of (64) in (59) leads back to the FOSA result (35). 
If follows from (63) that the dynamo equation (59) contains velocity correlation 

functions that depend only on U ( T )  = D-' n(rPT, t - T ) ,  in other words, dynamo action 
at (r, t )  depends only on the time history of v measured a t  one material point moving 
with the mean flow, such that its position is r at time t. This result holds to arbitrary 
order; by replacing v by V the mean flow v, has been completely accounted for. It 
is now possible to extend Knobloch's (1978) work to the case no + 0 by working out 
the terms n = 3,4,  etc. in (63). However, in the author's view it makes little sense 
to do so. This is because the convergence of the series (63) is highly questionable when 
(7, v/Z) approaches unity. In  other words, just when the terms n > 2 in (63) become 
really important, we should a t  the same time expect a meaningless result. This was 
realized by Knobloch (1977, 1978), but his suggestion that the scalar /3-coefficient 
could become negative appears unfounded. 

The purpose of (63) is therefore not to provide a series expansion that one could 
actually evaluate in any useful way; its purpose is rather to show the existence of 
an expression demonstrating that the dynamo equation depends only on 6 instead 
of v when v, =k 0. One may expect that this property is not affected by the fact that 
(63) diverges, and carries over to a dynamo theory for long correlation times yet to 
be developed. A possible, but unproven, implication of (63) is that in setting up a 
dynamo theory one may ignore the mean flow and in the end replace v by ij to account 
for v, + 0. 

I am indebted to Drs J. Kuijpers, A. M. Soward, G. A. Stevens and M. Stix for 
their helpful remarks and constructive criticism on an earlier version of this work. I 
acknowledge a very illuminating correspondence with Dr K.-H. Radler. 
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Appendix A 
We wish to provet 

DIVo x (ao x bO)] = V x [(DUO) x (DbO)], 

Here we follow the simplified notation of figure 3: rd7+f l  and D-'+D. For any 
matrix D 

€ijk D$p D5q Dkr = 'pqr det D* (A 3) 

Multiplying with D-lpZ and using det D = 1, (A 3) becomes 

%/k D j q  Dkr = 'pqr D-lpZ' 

Equation (A 4) implies 

[(Duo) ( D b o ) l Z  €Zjk O5q Dkr 

- - %ar D - l p z ~ o q b o r  = [D-'*(u' x bO)]l, (A 5 )  

where * indicates the transposed matrix. The relation between V and Vo follows from 

Collecting these results and writing co = uo x bo, it  remains to prove that 

D(Vo x C") = (avo) x (9~'). (A 7) 

Writing down the Zth component of the right-hand side of (A 7),  

€Z5k vog(akr tor) = '%jk %jq akr(vog  +%jk cor(Y akr)* (A 8) 

To the first term on the right-hand side we apply (A 4) to find 

The second term of (A 8) was obtained by applying (A 6) in the form 9,,yq.= y: 
and it can easily be seen to vanish, because V, a,, is symmetric in the indices 3 
and k. This last point can be shown as follows. D-I =ar"/ar, so that 
a,, = D-Irk = axor /axk .  Hence V, a,, = %7?,./az5 a x k .  This completes the proof of 
(A 1). 

t I am much indebted to Dr K.-H. Riidler, who pointed out to me the short and concise proof 
given here. 
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Appendix B. Turbulent transport of a scalar 
Scalar transport is governed by 

a 
- p  = -v*pv, v =  uo+u. 
at 

Direct application of the theory (Van Kampen 1976, $12; 1981, chap. 14) gives the 
following equation for po = ( p ) ,  see also (14) : 

(B 2) 
go a = Rp,+~omd7(C(t) eTRC(t-7) e-TR>pO, 

R = - V . ( V ,  ) = - v  0 *V( ), 

C = - V * ( u  ) = - u * V (  ). 

The latter equations are a consequence of imcompressibility. The analysis of $4 is 
very easy for scalars. For incompressible flows the relation analogous to (26) is 

(B 3) eTRf(r, t )  = f(rT, t ) .  

Evaluation of exp (7R)C(t-7)) exp ( - 7 R ) p 0  is now immediate: 

-eTRVuwu(r, t - 7 )  edTRpo(r, t )  = -eTR w,,(r, t--)V,,po(rT,t) 

= -wu(r-7, t-T)V-',p,(r,t) 

= - (D-V(r-T,  t -7) )*Vpo = -q7)'vpo. 
Hence (B 2) can be written as 

a 
-po + V. p, O, = V G*Vpo, 
at 

G = Jowd7(B(0)1(7)), po= ( p ) .  

Generalization to a long correlation time along the lines of $7 is straightforward. 
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